Liste der Modulbereiche und Module

1 Image Acquisition 3
 1.1 Image Acquisition Methods ... 4
 1.2 Physikalische Akustik 1 .. 6
 1.3 Physikalische Akustik 2 .. 7
 1.4 Ultrasound Imaging .. 8

2 Image Analysis 9
 2.1 Advanced Image Analysis .. 10
 2.2 Correspondence Problems in Computer Vision 11
 2.3 Differential Equations in Image Processing and Computer Vision 13
 2.4 Differential Geometric Aspects of Image Processing 15
 2.5 High Level Computer Vision ... 17
 2.6 Image Compression .. 18
 2.7 Image Processing and Computer Vision 20
 2.8 Probabilistic Graphical Models and their Applications 22
 2.9 Probabilistic Methods in Image Analysis 23

3 Image Synthesis / Geometric Foundations 24
 3.1 Computation and Fabrication ... 25
 3.2 Computer Graphics .. 27
 3.3 Geometric Modelling .. 29
 3.4 Perception for Computer Graphics ... 31
 3.5 Realistic Image Synthesis ... 33

4 Image Related Fields 35
 4.1 AI Planning ... 36
 4.2 Artificial Intelligence ... 37
 4.3 Audio/Visual Communication and Networks 39
 4.4 Digital Transmission & Signal Processing 41
 4.5 Elements of Data Science and Artificial Intelligence 43
4.6 Elements of Machine Learning .. 44
4.7 Human Computer Interaction .. 46
4.8 Information Retrieval and Data Mining 47
4.9 Machine Learning ... 48
4.10 Multimedia Transport .. 49
4.11 Neural Networks: Theory and Implementation 51
4.12 Statistical Natural Language Processing 52
4.13 Topics in Algorithmic Data Analysis 53
4.14 Zerstörungsfreie Prüfverfahren I .. 54

5 Seminars .. 56
5.1 Seminar .. 57

6 Master Seminar and Thesis .. 59
6.1 Master Seminar (Visual Computing) 60
6.2 Master Thesis .. 61
Modulbereich 1

Image Acquisition
Image Acquisition Methods

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>occasional</td>
<td>1 semester</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Dr. Pascal Peter

Dozent/inn/en Dr. Pascal Peter

Zulassungsvoraussetzungen Undergraduate knowledge in mathematics (e.g. *Mathematik für Informatiker I-III*). Basic knowledge in physics is helpful, but the lecture is designed to be self-contained in this regard.

Leistungskontrollen / Prüfungen Passing the exam or re-exam. Regular attendance in the weekly assignments which are intended to be solved and discussed during the tutorial session.

Lehrveranstaltungen / SWS

- 2 h lectures
- 2 h tutorial
- = 4 h (weekly)

Homeowrk assignments (theory and programming) and classroom assignments.

Arbeitsaufwand

- 60 h of classes
- 120 h private study
- = 180 h (= 6 ECTS)

Modulnote The final grade reflects the performance in the exam or the re-exam. The better grade counts.

Sprache English

Lernziele / Kompetenzen

A broad variety of image acquisition methods is described, including imaging by virtually all sorts of electromagnetic waves, acoustic imaging, magnetic resonance imaging and more. While medical imaging methods play an important role, the overview is not limited to them.

Starting from physical foundations, description of each image acquisition method extends via aspects of technical realisation to mathematical modelling and representation of the data.

Inhalt

1. Introduction and Basic Concepts
2. Imaging by Visible Light 2.1 Electromagnetic Spectrum 2.2 Optics, Sensorics, Photography 2.3 Colour Spaces, Telescopes, Mirrors, Microscopy 2.4 Dual Photography, Depth Imaging, Holography, Light Fields
3. Imaging by Invisible Electromagnetic Radiation 3.1 X-Ray and Gamma-Ray Imaging in 2-D 3.2 Computerised X-Ray Tomography 3.3 Radioastronomy, Radar, Terahertz Radiation, Microwave and Radio Wave Imaging 3.4 Magnetic Resonance Imaging
4. Imaging without Electromagnetic Radiation 4.1 Electron Microscopy 4.2 Acoustic Waves, Sonar, Ultrasound

Literaturhinweise

• Articles from journals and conferences.
Modulverantwortliche/r Prof. Dr. Ute Rabe
Dozent/inn/en Prof. Dr. Ute Rabe
Zulassungsvoraussetzungen keine
Leistungskontrollen / Prüfungen benotete Klausur (schriftlich oder mündlich)
Lehrveranstaltungen / SWS 2 SWS Vorlesung
= 2 SWS
Arbeitsaufwand 30 h Präsenzstudium
= 60 h Eigenstudium (Vor- und Nachbereitung, Prüfung)
= 90 h (= 3 ECTS)
Sprache Deutsch

Lernziele / Kompetenzen

Die Studierenden erwerben umfangreiche Kenntnisse und Fertigkeiten in:

- Grundkonzepte der physikalischen Akustik
- Einführung in die Materialprüfung mit Ultraschall
- Gerätetechnische Aspekte
- Praxisbezogene Anwendungsbeispiele

Inhalt

- Schwingungen, Schallwellen, Ultraschall
- Anregung und Empfang von Ultraschallwellen, Methoden der Bildgebung (A-B-C-Scan)
- Beugung und Fehlergrößenbestimmung
- Ultraschall-Mikroskopie
- Anwendungsbeispiele

Literaturhinweise

Literaturhinweise werden zu Beginn der Veranstaltung bekannt gegeben.

Weitere Informationen

Methoden: Powerpoint-Präsentation über Beamer unterstützt durch Overhead-Projektor, Demonstrationsexperimente
Physikalische Akustik 2

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>jedes Wintersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr. Ute Rabe

Dozent/inn/en: Priv. Doz. Dr. Martin Spies und Mitarbeiter des IZFP

Zulassungsvoraussetzungen: Physikalische Akustik 1 (empfohlen)

Leistungskontrollen / Prüfungen: benotete Klausur (schriftlich oder mündlich)

Lehrveranstaltungen / SWS:
- 2 SWS Vorlesung
- 1 SWS Übung
- 3 SWS

Arbeitsaufwand:
- 45 h Präsenzstudium
- 75 h Eigenstudium (Vor- und Nachbereitung, Prüfung)
- 120 h (= 4 ECTS)

Sprache: Deutsch

Lernziele / Kompetenzen

Die Studierenden erwerben umfangreiche Kenntnisse und Fertigkeiten in:

- Grundlegende Konzepte der Bildgebung und Rekonstruktion
- Beschreibung der Schallausbreitung in komplexen Werkstoffen
- Grundlagen der Modellierung und Simulation
- Theoretische Grundlagen der Beschreibung der verschiedenen Wellenarten
- Praxisbezogene Anwendungsbeispiele

Inhalt

- Beschreibung der Ultraschallwellen im 3-dimensionalen Medium
- Methoden der Simulation
- Ausbreitung von Ultraschall in elastisch anisotropen Medien
- Phased Array, Total Focusing Method, Synthetic Aperture Focusing Technique (SAFT)
- Anwendungsbeispiele

Literaturhinweise

Literaturhinweise werden zu Beginn der Veranstaltung bekannt gegeben.

Weitere Informationen

Methoden: Powerpoint-Präsentation über Beamer unterstützt durch Overhead-Projektor, Demonstrationsexperimente, rechnerische Vertiefung der Vorlesungsinhalte im Rahmen der Übung

7
Modulverantwortliche/r Dr. Marc Fournelle
Dozent/inn/en Dr. Marc Fournelle

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen
- Regular attendance of classes
- Final exam (oral or written)

Lehrveranstaltungen / SWS
2 h lectures
= 2 h (weekly)

Arbeitsaufwand
30 h of classes
+ 80 h private study
= 120 h (= 4 ECTS)

Modulnote Will be determined from the performance in the final exam. The exact modalities will be announced at the beginning of the course.

Sprache English

Lernziele / Kompetenzen

Understanding of ultrasound physics of technical applications and medical imaging.

Inhalt

The lecture deals with the generation, the detection, the processing and the visualization of ultrasound signals in technical (e.g. sonar, level or flow control) and biomedical applications (medical imaging, navigation, therapy/therapy control):

- Physics and mathematics of ultrasound and ultrasound signal processing
- Description of the entire signal pipeline of an ultrasound system
- Basics of different measurement and imaging methods

Literaturhinweise

Kuttruff - Physik und Technik des Ultraschalls. More will be announced at the beginning of the course.

Weitere Informationen

This module was previously known as *Bildgebende Verfahren: Ultraschall*.
Modulbereich 2

Image Analysis
Modulverantwortliche/r Prof. Dr. Joachim Weickert
Dozent/inn/en Prof. Dr. Joachim Weickert
Zulassungsvoraussetzungen Requires undergraduate knowledge in mathematics (e.g. Mathematik für Informatiker I-III), and elementary C knowledge. Basic knowledge in image processing and computer vision is recommendable.
Leistungskontrollen / Prüfungen In order to qualify for the exams, attendance of the tutorials is mandatory. There will be an exam and a re-exam. Further modalities (such as written or oral exam) will be communicated at the beginning of the lecture.

Lehrveranstaltungen / SWS 2 h lectures
+ 2 h tutorials
= 4 h (weekly)

Arbeitsaufwand 60 h of classes
+ 120 h private study
= 180 h (= 6 ECTS)

Modulnote The grade reflects the performance in the exam or the re-exam. The better grade counts.
Sprache English

Lernziele / Kompetenzen
In this lecture, we will discuss advanced topics in the fields of image processing and computer vision. Most of the presented methods fuse the information from several images in order to produce an enhanced composite image. Examples for such techniques are super-resolution, high dynamic range (HDR) imaging, tone mapping and gradient domain techniques.

Inhalt
1. Introduction and Overview
2. Finding Correspondences
3. Super-Resolution
4. High Dynamic Range Imaging
5. Tone Mapping
6. Exposure Fusion
7. Alignment of Exposure Series
8. Deghosting and Joint Super-Resolution and HDR
9. Focus Stacking
10. Gradient Domain Techniques

Literaturhinweise
There is no specific book that covers the complete content of this class. Many lectures will be based on articles from journals and conferences. However, the book of R. Szeliski covers some of the topics and additionally summarises most of the intensively studied areas of computer vision research:
Correspondence Problems in Computer Vision

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>occasional</td>
<td>1 semester</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr. Joachim Weickert
Dozent/inn/en Dr. Pascal Peter

Zulassungsvoraussetzungen Undergraduate mathematics (e.g. "Mathematik für Informatiker I-III") is required, as well as elementary C knowledge (for the programming assignments). Knowledge in image processing or differential equations is useful.

Leistungskontrollen / Prüfungen
- Regular attendance of lecture and tutorial
- Written or oral exam and the end of the course

Lehrveranstaltungen / SWS
2 h lectures
+ 2 h tutorial
= 4 h (weekly)

Arbeitsaufwand
60 h of classes
+ 120 h private study
= 180 h (= 6 ECTS)

Modulnote Will be determined from performance in exams. The exact modalities will be announced at the beginning of the module.

Sprache English

Lernziele / Kompetenzen

Correspondence problems are a central topic in computer vision. Thereby, one is interested in identifying and matching corresponding features in different images/views of the same scene. Typical correspondence problems are the estimation of motion information from consecutive frames of an image sequence (optic flow), the reconstruction of a 3-D scene from a stereo image pair and the registration of medical image data from different modalities (e.g. CT and MRT). Central part of this lecture is the discussion of the most important correspondence problems as well as the modelling of suitable algorithms for solving them.

Inhalt

1. Introduction and Overview
2. General Matching Concepts
 2.1 Block Matching
 2.2 Correlation Techniques
 2.3 Interest Points
 2.4 Feature-Based Methods
3. Optic Flow I
 3.1 Local Differential Methods
 3.2 Parameterisation Models
4. Optic Flow II
 4.1 Global Differential Methods
 4.2 Horn and Schunck
5. Optic Flow III
 5.1 Advanced Constancy Assumptions
 5.2 Large Motion
6. Optic Flow IV
6.1 Robust Data Terms
6.2 Discontinuity-Preserving Smoothness Terms

7. Optic Flow V
7.1 High Accuracy Methods
7.2 SOR and Linear Multigrid

8. Stereo Matching I
8.1 Projective Geometry
8.2 Epipolar Geometry

9. Stereo Matching II
9.1 Estimation of the Fundamental Matrix

10. Stereo Matching III
10.1 Correlation Methods
10.2 Variational Approaches
10.3 Graph Cuts

11. Medical Image Registration
11.1 Mutual Information
11.2 Elastic and Curvature Based Registration
11.3 Landmarks

12. Particle Image Velocimetry
12.1 Div-Curl-Regularisation
12.2 Incompressible Navier Stokes Prior

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Modulverantwortliche/r Prof. Dr. Joachim Weickert
Dozent/inn/en Prof. Dr. Joachim Weickert

Zulassungsvoraussetzungen Undergraduate mathematics (e.g. "Mathematik für Informatiker I-III") and some elementary programming knowledge in C is required. Prior participation in "Image Processing and Computer Vision" is useful.

Leistungskontrollen / Prüfungen • For the homework assignments one can obtain up to 24 points per week. Actively participating in the classroom assignments gives 12 more points per week, regardless of the correctness of the solutions. To qualify for both exams one needs 2/3 of all possible points.
• Passing the final exam or the re-exam.
• The re-exam takes place during the last two weeks before the start of lectures in the following semester.

Lehrveranstaltungen / SWS 4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Homework assignments (theory and programming) and classroom assignments.

Arbeitsaufwand 90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote Will be determined from the performance in the exam or the re-exam. The better grade counts.

Sprache English

Lernziele / Kompetenzen

Many modern techniques in image processing and computer vision make use of methods based on partial differential equations (PDEs) and variational calculus. Moreover, many classical methods may be reinterpreted as approximations of PDE-based techniques. In this course the students will get an in-depth insight into these methods. For each of these techniques, they will learn the basic ideas as well as theoretical and algorithmic aspects. Examples from the fields of medical imaging and computer aided quality control will illustrate the various application possibilities.

Inhalt

1. Introduction and Overview
2. Linear Diffusion Filtering
 2.1 Basic Concepts
 2.2 Numerics
 2.3 Limitations and Alternatives
3. Nonlinear Isotropic Diffusion Filtering
 3.1 Modeling
 3.2 Continuous Theory
 3.2 Semidiscrete Theory
 3.3 Discrete Theory
 3.4 Efficient Sequential and Parallel Algorithms
4. Nonlinear Anisotropic Diffusion Filtering
 4.1 Modeling
 4.2 Continuous Theory
 4.3 Discrete Aspects
 4.4 Efficient Algorithms
5. Parameter Selection
6. Variational Methods
 6.1 Basic Ideas
 6.2 Discrete Aspects
 6.3 TV Regularisation and Primal-Dual Methods
 6.4 Functionals of Two Variables
7. Vector- and Matrix-Valued Images
8. Unification of Denoising Methods
9. Osmosis
 9.1 Continuous Theory and Modelling
 9.2 Discrete Theory and Efficient Algorithms
10. Image Sequence Analysis
 10.1 Models for the Smoothness Term
 10.2 Models for the Data Term
 10.3 Practical Aspects
 10.4 Numerical Methods
11. Continuous-Scale Morphology
 11.1 Basic Ideas
 11.2 Shock Filters and Nonflat Morphology
12. Curvature-Based Morphology
 12.1 Mean Curvature Motion
 12.2 Affine Morphological Scale-Space
13. PDE-Based Image Compression
 13.1 Data Selection
 13.2 Optimised Encoding and Better PDEs

Literaturhinweise

• Articles from journals and conferences.
Modulverantwortliche/r Prof. Dr. Joachim Weickert
Dozent/inn/en Dr. Marcelo Cárdenas

Zulassungsvoraussetzungen undergraduate mathematics (e.g. Mathematik für Informatiker I-III)

Leistungskontrollen / Prüfungen • Written or oral exam at end of course
 • A re-exam takes place during the last two weeks before the start of lectures in the following semester.

Lehrveranstaltungen / SWS 3 h lectures
 + 1 h tutorial
 = 4 h (weekly)

Arbeitsaufwand 60 h of classes
 + 120 h private study
 = 180 h (= 6 ECTS)

Modulnote The final grade reflects the performance in the exam or re-exam.

Sprache English

Lernziele / Kompetenzen

Students will learn basic concepts from differential geometry and how they can be applied to image analysis problems.

Inhalt

The course is concerned with modern methods of digital image processing which rely on the differential geometry of curves and surfaces. This includes methods of image enhancement (like smoothing methods) as well as feature extraction and segmentation (like locating contours with active contour models).

The course aims at combining theoretical foundation directly with a variety of applications from the above-mentioned fields; the range of topics extends up to recent research problems.

An introduction to the relevant concepts and results from differential geometry will be included in the course.

Topics include:
• curves and surfaces in Euclidean space
• level sets
• curve and surface evolutions
• variational formulations and gradient descents
• diffusion of scalar and non-scalar data
• diffusion on manifolds
• active contours and active regions

Literaturhinweise

• Articles from journals and conferences.
Lernziele / Kompetenzen

The main goal of the lecture is to develop an understanding of recent and state-of-the-art methods in high level computer vision, which are often based on Deep Neural Networks and Machine Learning.

Inhalt

This course will cover essential techniques for high-level computer vision including deep learning and other modern machine learning methods. These techniques facilitate semantic interpretation of visual data, as it is required for a broad range of applications like robotics, driver assistance, multi-media retrieval, surveillance etc. In this area, the recognition and detection of objects, activities and visual categories have seen dramatic progress over the last decade. We will discuss the methods that have lead to state-of-the-art performance in this area and provide the opportunity to gather hands-on experience with these techniques.

Literaturhinweise

- “Computer Vision: Algorithms and Applications” by Richard Szeliski (in particular chapter on image formation)
- “Pattern recognition and machine learning” by Christopher M. Bishop
- “Computer vision” by David A. Forsyth and Jean Ponce
- Recent Scientific Papers that will be announced during the lecture
Image Compression

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>occasional</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Dr. Pascal Peter
Dozent/inn/en Dr. Pascal Peter

Zulassungsvoraussetzungen Basic mathematics courses (such as *Mathematik für Informatiker I-III*) are required. Image processing lectures such as *Image Processing and Computer Vision* are helpful for some specific topics, but not necessary. For the programming assignments, some elementary knowledge of C is required.

Leistungskontrollen / Prüfungen Passing of the exam or the re-exam. These are open book written exams. Regular attendance at tutorials is expected. The tutorials include homework assignments as well as classroom assignments. Homework assignments are handed in and graded, while classroom assignments are solved during the tutorials. Homework consists of both theoretical and programming assignments, while classroom assignments are all theoretical. Working together in groups of up to 3 people is permitted and highly encouraged.

Lehrveranstaltungen / SWS
4 h lectures
+ 2 h tutorials
= 6 h (weekly)

Arbeitsaufwand
90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote The final grade reflects the performance in the exam or re-exam. The better grade counts.

Sprache English

Lernziele / Kompetenzen

Motivation: High resolution image data is becoming increasingly popular in research and commercial applications (e.g. entertainment, medical imaging). In addition, there is also a high demand for content distribution via the internet. Due to the resulting increase in storage and bandwidth requirements, image compression is a highly relevant and very active area of research.

Teaching Goals: The course is designed as a supplement for image processing lectures, to be attended before, after or parallel to them. After the lecture, participants should understand the theoretical foundations of image compression and be familiar with a wide range of classical and contemporary compression methods.

Inhalt

The lecture can be separated into two parts: The first half of the lecture deals with lossless image compression. We discuss the information theoretic background of so-called entropy coders (e.g. Huffman-coding, arithmetic coding, ...), talk about dictionary methods (e.g. LZW), and discuss state-of-the-art approaches like PPM and PAQ. These tools are not limited to compressing image data, but also form core parts of general data compression software such as BZIP2. Knowledge about entropy coding and prediction is key for understanding the classic and contemporary lossless codecs like PNG, gif or JBIG.

The second part of the lecture is dedicated to lossy image compression techniques. We deal with classic transformation based compression (JPEG, JPEG2000), but also with emerging approaches like inpainting-based compression. Furthermore, we consider related topics like human perception, error measurements, and offer a short introduction to video coding.
There is no specific book that covers the complete content of this class. However, each of the following books covers several of the topics discussed in the lecture:

- T. Strutz: Bilddatenkompression. Vieweg+Teubner (in German)
- K. Sayood: Introduction to Data Compression. Morgan Kaufmann

Further references will be given during the lecture.
Modulverantwortliche/r Prof. Dr. Joachim Weickert

Dozent/inn/en Prof. Dr. Joachim Weickert

Zulassungsvoraussetzungen Undergraduate mathematics (e.g. Mathematik für Informatiker I-III) and elementary programming knowledge in C

Leistungskontrollen / Prüfungen • For the homework assignments one can obtain up to 24 points per week. Actively participating in the classroom assignments gives 12 more points per week, regardless of the correctness of the solutions. To qualify for both exams one needs 2/3 of all possible points.
• Passing the final exam or the re-exam.
• A re-exam takes place during the last two weeks before the start of lectures in the following semester.

Lehrveranstaltungen / SWS 4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand 90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote Will be determined from the performance in the exam or the re-exam. The better grade counts.

Sprache English

Lernziele / Kompetenzen

Broad introduction to mathematical methods in image processing and computer vision. The lecture qualifies students for a bachelor thesis in this field. Together with the completion of advanced or specialised lectures (9 credits at least) it is the basis for a master thesis in this field.

Inhalt

Inhalt

1. Basics
 1.1 Image Types and Discretisation
 1.2 Degradations in Digital Images
2. Colour Perception and Colour Spaces
3. Image Transformations
 3.1 Continuous Fourier Transform
 3.2 Discrete Fourier Transform
 3.3 Image Pyramids
 3.4 Wavelet Transform
4. Image Compression
5. Image Interpolation
6. Image Enhancement
 6.1 Point Operations
6.2 Linear Filtering and Feature Detection
6.3 Morphology and Median Filters
6.3 Wavelet Shrinkage, Bilateral Filters, NL Means
6.5 Diffusion Filtering
6.6 Variational Methods
6.7 Deconvolution Methods

7. Texture Analysis
8. Segmentation
 8.1 Classical Methods
 8.2 Variational Methods
9. Image Sequence Analysis
 9.1 Local Methods
 9.2 Variational Methods
10. 3-D Reconstruction
 10.1 Camera Geometry
 10.2 Stereo
 10.3 Shape-from-Shading
11. Object Recognition
 11.1 Hough Transform
 11.2 Invariants
 11.3 Eigenspace Methods

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Probabilistic Graphical Models and their Applications

Preliminary Information

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r | Prof. Dr. Bernt Schiele
Dozent/inn/en | Prof. Dr. Bernt Schiele

Zulassungsvoraussetzungen | keine

Leistungskontrollen / Prüfungen | Written or oral exam and the end of the course.

Lehrveranstaltungen / SWS
- 2 h lectures
- + 2 h tutorial
= 4 h (weekly)

Arbeitsaufwand
- 60 h of classes
- + 120 h private study
= 180 h (= 6 ECTS)

Modulnote | Will be determined from performance in examinations and exercises. The exact modalities will be announced at the beginning of the course.

Sprache | English

Lernziele / Kompetenzen

The main goal of the class is to understand the concepts behind graphical models and to give hands-on knowledge such that one is able to design models for computer vision applications but also in other domains. Therefore the lecture is roughly divided in two parts: learning about graphical models and seeing them in action.

Inhalt

This course will introduce the basic concepts of probabilistic graphical models. Graphical Models are a unified framework that allow to express complex probability distributions in a compact way. Many machine learning applications are tackled by the use of these models, in this course we will highlight the possibilities with computer vision applications.

Literaturhinweise
Probabilistic Methods in Image Analysis

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>occasional</td>
<td>1 semester</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
Prof. Dr. Joachim Weickert

Dozent/inn/en
Prof. Dr. Joachim Weickert

Zulassungsvoraussetzungen
Undergraduate mathematics such as *Mathematik für Informatiker I-III* is required. Knowledge of probability theory or statistics is helpful but not required.

Leistungskontrollen / Prüfungen
The homework assignments are intended to be solved at home and have to be submitted in the lecture break, or earlier. In order to qualify for the exams one must obtain 50% of the possible points on average.

Lehrveranstaltungen / SWS
2 h lectures
+ 2 h tutorials
= 2 h (weekly)

Arbeitsaufwand
60 h of classes
+ 120 h private study
= 180 h (= 6 ECTS)

Modulnote
The grade reflects the performance in the exam or the re-exam. The better grade counts. The modality of the exam (written or oral) will be communicated in the beginning of the lecture.

Sprache
English

Lernziele / Kompetenzen

Probabilistic techniques are employed quite successfully in the processing and analysis of images, however, they also play a vital role in pattern classification, data mining and learning theory. This lecture introduces to some of the basic approaches.

Inhalt

In this course we will discuss

- basic notions from probability theory and statistics as well as from image processing
- histogram based image analysis and enhancement methods
- the probabilistic background of the Karhunen-Loeve expansion used for data compression, for example
- independent component analysis and applications
- the notion of entropy in image registration
- and, if time permits, we will give an introduction to the basic ideas of Markov random fields and simulated annealing.

Literaturhinweise

Relevant references will be provided in the lecture.
Modulbereich 3

Image Synthesis / Geometric Foundations
Computation and Fabrication

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td></td>
<td>At least every two years</td>
<td>1 semester</td>
<td>4</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
Prof. Dr. Hans-Peter Seidel

Dozent/inn/en
Prof. Dr. Hans-Peter Seidel
Dr. Vahid Babaei

Zulassungsvoraussetzungen
Some background in visual computing is recommended but not required.

Leistungskontrollen / Prüfungen

Nanoquiz: At the beginning of each lecture, we ask a few questions as a recapitulation of the last class.

Programming Assignment: The assignments give you the opportunity to apply what you have learned in class. It is also a chance for you to let us know about the topics that give you particular difficulty.

Project: You will have the opportunity to see your new learnings applied in a research context. You will start the projects (in groups of two or three) in the middle of the semester and you will present them during the last session and deliver a report.

Exam: There will be an oral exam.

Lehrveranstaltungen / SWS

2 h lectures
+ 2 h tutorial
= 4 h (weekly)

Arbeitsaufwand

60 h of classes
+ 120 h private study
= 180 h (= 6 ECTS)

Modulnote

- Nanoquiz
- Assignments
- Project
- Exam

The exact modalities will be announced at the beginning of the module.

Sprache
English

Lernziele / Kompetenzen

After successful completion of this course, you will be able to:

- Explain the fundamental mission of Computational Fabrication, why it is relevant and what is the necessary skill set for successfully applying it to real-world problems.
- Evaluate different representations of geometric models for manufacturing and create easily modifiable shapes.
- Review different manufacturing technologies, with a focus on additive manufacturing (3D printing), and analyze their advantages and disadvantages.
- Analyze the appearance reproduction workflow, including measuring, modeling and fabrication of object’s appearance.
- Apply halftoning algorithms to enable printers to approximate continuous inputs, thereby overcoming their inherent binary limitation.
- Understand necessary components for simulating the deformation of solid objects using the finite element method (FEM), including different measures of deformation, constitutive models of materials, and measuring mechanical properties of objects.
Inhalt

- Solid Modeling
- 3D Printing Software Pipeline
- 3D Printing Hardware Pipeline
- Halftoning Algorithms
 - Appearance Printing Pipeline
- Mass Spring Systems
- Continuum Mechanics
- Finite Element Method
- Design Space Exploration

Literaturhinweise

Unfortunately, there is no single textbook covering all materials of this course. We provide reading materials (mostly accessible online) at the end of each lecture.
Computer Graphics

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr. Philipp Slusallek
Dozent/inn/en Prof. Dr. Philipp Slusallek

Zulassungsvoraussetzungen Solid knowledge of linear algebra is recommended.

Leistungskontrollen / Prüfungen

- Successful completion of weekly exercises (30% of final grade)
- Successful participation in rendering competition (10%)
- Mid-term written exam (20%, final exam prerequisite)
- Final written exam (40%)
- In each of the above a minimum of 50% is required to pass

A re-exam typically takes place during the last two weeks before the start of lectures in the following semester.

Lehrveranstaltungen / SWS

- 4 h lectures
- + 2 h tutorial
- = 6 h (weekly)

Arbeitsaufwand

- 90 h of classes
- + 180 h private study
- = 270 h (= 9 ECTS)

Modulnote The grade is derived from the above assessments. Possible changes will be announced at the beginning of each semester.

Sprache English

Lernziele / Kompetenzen

This course provides the theoretical and practical foundation for computer graphics. It gives a wide overview of topics, techniques, and approaches used in various aspects of computer graphics but has some focus on image synthesis or rendering. The first part of the course uses ray tracing as a driving application to discuss core topics of computer graphics, from vector algebra all the way to sampling theory, the human visual system, sampling theory, and spline curves and surfaces. A second part then uses the rasterization approach as a driving example, introducing the camera transformation, clipping, the OpenGL API and shading language, plus advanced techniques.

As part of the practical exercises the students incrementally build their own ray tracing system. Once the basics have been covered, the students participate in a rendering competition. Here they can implement their favorite advanced algorithm and are asked to generate a high-quality rendered image that shows their techniques in action.

Inhalt

- Introduction
- Overview of Ray Tracing and Intersection Methods
- Spatial Index Structures
- Vector Algebra, Homogeneous Coordinates, and Transformations
- Light Transport Theory, Rendering Equation
- BRDF, Materials Models, and Shading
- Texturing Methods
- Spectral Analysis, Sampling Theory
- Filtering and Anti-Aliasing Methods
• Recursive Ray Tracing & Distribution Ray-Tracing
• Human Visual System & Color Models
• Spline Curves and Surfaces
• Camera Transformations & Clipping
• Rasterization Pipeline
• OpenGL API & GLSL Shading
• Volume Rendering (opt.)

Literaturhinweise

Will be announced in the lecture.
Geometric Modelling

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr. Hans-Peter Seidel
Dozent/inn/en Prof. Dr. Hans-Peter Seidel Dr. Rhaleb Zayer

Zulassungsvoraussetzungen calculus and basic programming skills

Leistungskontrollen / Prüfungen
- Regular attendance and participation.
- Weekly Assignments (10% bonus towards the course grade; bonus points can only improve the grade; they do not affect passing)
- Passing the written exams (mid-term and final exam).
- The mid-term and the final exam count for 50% each, but 10% bonus from assignments will be added.
- A re-exam takes place at the end of the semester break or early in the next semester.

Lehrveranstaltungen / SWS 4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Practical assignments in groups of 3 students (practice)
Tutorials consists of a mix of theoretical + practical assignments.

Arbeitsaufwand 90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote Will be based on the performance in exams, exercises and practical tasks. The detailed terms will be announced by the module coordinator.

Sprache English

Lernziele / Kompetenzen
Gaining knowledge of the theoretical aspect of geometric modelling problems, and the practical solutions used for modelling and manipulating curves and surfaces on a computer. From a broader perspective: Learning how to represent and interact with geometric models in a discretized, digital form (geometric representations by functions and samples; design of linear function spaces; finding ”good” functions with respect to a geometric modelling task in such spaces).

Inhalt
- Differential geometry Fundamentals
- Interpolation and Approximation
- Polynomial Curves
- Bezier and Rational Bezier Curves
- B-splines, NURBS
- Spline Surfaces
- Subdivision and Multiresolution Modelling
- Mesh processing
- Approximation of differential operators
- Shape Analysis and Geometry Processing
Literaturhinweise

Will be announced before the term begins on the lecture website.
Modulverantwortliche/r Dr. Karol Myszkowski
Dozent/inn/en Dr. Karol Myszkowski

Zulassungsvoraussetzungen Computer graphics, image processing, and the related math.

Leistungskontrollen / Prüfungen Regular attendance of lecture. Written exam at the end of the course.

Lehrveranstaltungen / SWS 2 h lectures
 = 2 h (weekly)

Arbeitsaufwand 30 h of classes
 + 60 h private study
 = 90 h (= 3 ECTS)

Modulnote Will be determined from performance in examinations. The exact modalities will be announced at the beginning of the module.

Sprache English

Lernziele / Kompetenzen

The target audience are students in computer science or related fields. This course covers topics from psychology and physiology that are relevant to computer graphics, and novel perception research and applications in computer graphics and vision. The objective is to transfer knowledge, experience and competencies that are required for doing research in perceptual computer graphics, and that are useful in many related fields, such as experimental psychology, or usability studies in human-computer interaction.

Inhalt

As computer graphics is producing images and videos that are ultimately perceived by a human, it's mandatory to account for how the human visual system (HVS) is processing this information. The HVS is complex, exhibiting many non-linearities as well as feedback and is only partially understood. While this poses a challenge, it can also be seen as an opportunity which can be exploited in image compression, watermarking, denoising, enhancement, upsampling, etc. Computational models which can predict the human response to the distortion of visual content are important when this opportunity is taken. To this end, our course covers the basic theory of perception research, including:

- What is perception?
- Designing experiments,
- Analysis and statistics,

and the practical applications in computer graphics, including:

- Eye physiology and image formation,
- Brightness and contrast,
- Color,
- High dynamic range and tone reproduction,
- Image compression and image quality,
- Depth and shape perception,
- Material perception.
Literaturhinweise

The following list contains the most relevant books for this lecture:

- Seeing in Depth: Basic Mechanics (Vol. 1) and Seeing in Depth: Depth Perception (Vol. 2), Ian P. Howard and Brian J. Rogers, Oxford Psychology Series, 2012.

Further literature will be announced during the course.
Modulverantwortliche/r Prof. Dr. Philipp Slusallek
Dozent/inn/en Prof. Dr. Philipp Slusallek
Dr. Karol Myszkowski
Guprit Singh

Leistungskontrollen / Prüfungen
• Theoretical and practical exercises (50% of the final grade)
• Final oral exam (other 50%)
• A minimum of 50% of needs to be achieved in each part to pass.
• A re-exam takes place during the last two weeks before the start of lectures
 in the following semester.

Lehrveranstaltungen / SWS 4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand 90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote The final grade is be based on the assessments above. Any changes will be an-
nounced at the beginning of the semester.

Sprache English

Lernziele / Kompetenzen

At the core of computer graphics is the requirement to render highly realistic and often even physically-accurate images of
virtual 3D scenes. In this lecture students will learn about physically-based lighting simulation techniques to compute the
distribution of light even in complex environment. The course also covers issues of perception of images, including also HDR
technology, display technology, and related topics.

After this course students should be able to build their own highly realistic but also efficient rendering system.

Inhalt

• Rendering Equation
• Radiosity and Finite-Element Techniques
• Probability Theory
• Monte-Carlo Integration & Importance Sampling
• Variance Reduction & Advanced Sampling Techniques
• BRDFs and Inversion Methods
• Path Tracing & * Bidirectional Path Tracing
• Virtual Point-Light Techniques
• Density Estimation & Photon Mapping
• Vertex Connection & Merging
• Path Guiding
• Spatio-Temporal Sampling & Reconstruction
• Approaches for Interactive Global Illumination
• Machine Learning Techniques in Rendering
Literaturhinweise

Literature will be announced in the first lecture of the semester. But here are some relevant textbooks:

- Pharr, Jakob, Humphreys, Physically Based Rendering: From Theory to Implementation, Morgan Kaufmann
- Apodaca, Gritz, Advanced Renderman: Creating CGI for the Motion Pictures, Morgan Kaufmann, 1999
Modulbereich 4

Image Related Fields
AI Planning

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>winter semester</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr. Jörg Hoffmann
Dozent/inn/en Prof. Dr. Jörg Hoffmann
Zulassungsvoraussetzungen For graduate students: none
Leistungskontrollen / Prüfungen
- Regular attendance of classes and tutorial
- Paper as well as programming exercises for exam qualification
- Final exam
- A re-exam takes place before the start of lectures in the following semester.

Lehrveranstaltungen / SWS
4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand
90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote Will be determined from performance in exams, exercises and practical tasks. The exact modalities will be announced at the beginning of the module.
Sprache English

Lernziele / Kompetenzen

The students will gain a deep understanding of algorithms used in Automatic Planning for the efficient exploration of large state spaces, from both a theoretical and practical point of view. The programming exercises will familiarize them with the main implementation basis in Automatic Planning. The search algorithms are generic and are relevant also in other CS sub-areas in which large transition systems need to be analyzed.

Inhalt

Automatic Planning is one of the fundamental sub-areas of Artificial Intelligence, concerned with algorithms that can generate strategies of action for arbitrary autonomous agents in arbitrary environments. The course examines the technical core of the current research on solving this kind of problem, consisting of paradigms for automatically generating heuristic functions (lower bound solution cost estimators), as well as optimality-preserving pruning methods. Apart from understanding these techniques themselves, the course explains how to analyze, combine, and compare them.

Starting from an implementation basis provided, students implement their own planning system as part of the course. The course is concluded by a competition between these student systems.

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Artificial Intelligence

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr. Jörg Hoffmann

Dozent/inn/en Prof. Dr. Jörg Hoffmann
 Prof. Dr. Jana Köhler

Zulassungsvoraussetzungen For graduate students: none

Leistungskontrollen / Prüfungen • Regular attendance of classes and tutorials
 • Solving of weekly assignments
 • Passing the final written exam
 • A re-exam takes place during the last two weeks before the start of lectures in the following semester.

Lehrveranstaltungen / SWS 4 h lectures
 + 2 h tutorial
 = 6 h (weekly)

Arbeitsaufwand 90 h of classes
 + 180 h private study
 = 270 h (= 9 ECTS)

Modulnote Will be determined from the performance in exams. The exact modalities will be announced at the beginning of the module.

Sprache English

Lernziele / Kompetenzen

Knowledge about basic methods in Artificial Intelligence

Inhalt

Problem-solving:
 • Uninformed- and informed search procedures
 • Adversarial search

Knowledge and reasoning:
 • Propositional logic
 • SAT
 • First-order logic, Inference in first-order logic
 • Knowledge representation, Semantic Web
 • Default logic, rule-based mechanisms

Planning:
 • STRIPS formalism and complexity
 • Delete relaxation heuristics

Probabilistic reasoning:
 • Basic probabilistic methods
 • Bayesian networks
Literaturhinweise

Russel & Norvig Artificial Intelligence: A Modern Approach;
further reading will be announced before the start of the course on the course page on the Internet.
Audio/Visual Communication and Networks

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr.-Ing. Thorsten Herfet

Dozent/inn/en Prof. Dr.-Ing. Thorsten Herfet

Zulassungsvoraussetzungen
Solid foundation of mathematics (differential and integral calculus) and probability theory. The course will build on the mathematical concepts and tools taught in TC I while trying to enable everyone to follow and to fill gaps by an accelerated study of the accompanying literature. *Signals and Systems* as well as *Digital Transmission and Signal Processing (TC I)* are strongly recommended but not required. Related core lecture *Digital Transmission and Signal Processing (TC I)*

Leistungskontrollen / Prüfungen
Regular attendance of classes and tutorials. Passing the final exam. Oral exam directly succeeding the course. Eligibility: Weekly exercises/task sheets, grouped into two blocks corresponding to first and second half of the lecture. Students must provide min. 50% grade in each of the two blocks to be eligible for the exam.

Lehrveranstaltungen / SWS
4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand
90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote
Final Exam Mark

Sprache
English

Lernziele / Kompetenzen

AVCN will deepen the students’ knowledge on modern communications systems and will focus on wireless systems.

Since from a telecommunications perspective the combination of audio/visual data – meaning inherently high data rate and putting high requirements on the realtime capabilities of the underlying network – and wireless transmission – that is unreliable and highly dynamic with respect to the channel characteristics and its capacity – is the most demanding application domain.

Inhalt

As the basic principle the course will study and introduce the building blocks of wireless communication systems. Multiple access schemes like TDMA, FDMA, CDMA and SDMA are introduced, antennas and propagation incl. link budget calculations are dealt with and more advanced channel models like MIMO are investigated. Modulation and error correction technologies presented in Telecommunications I will be expanded by e.g. turbo coding and receiver architectures like RAKE and BLAST will be introduced. A noticeable portion of the lecture will present existing and future wireless networks and their extensions for audio/visual data. Examples include 802.11n and the terrestrial DVB system (DVB-T2).

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Weitere Informationen

This module was formerly also known as *Telecommunications II*.
Modulverantwortliche/r Prof. Dr.-Ing. Thorsten Herfet
Dozent/inn/en Prof. Dr.-Ing. Thorsten Herfet

Zulassungsvoraussetzungen The lecture requires a solid foundation of mathematics (differential and integral calculus) and probability theory. The course will, however, refresh those areas indispensably necessary for telecommunications and potential intensification courses and by this open this potential field of intensification to everyone of you.

Leistungskontrollen / Prüfungen Regular attendance of classes and tutorials
Passing the final exam in the 2nd week after the end of courses.
Eligibility: Weekly exercises / task sheets, grouped into two blocks corresponding to first and second half of the lecture. Students must provide min. 50% grade in each of the two blocks to be eligible for the exam.

Lehrveranstaltungen / SWS
4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand
90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote Final exam mark
Sprache English

Lernziele / Kompetenzen

Digital Signal Transmission and Signal Processing refreshes the foundation laid in "Signals and Systems" [Modulkennung]. Including, however, the respective basics so that the various facets of the introductory study period (Bachelor in Computer Science, Vordiplom Computer- und Kommunikationstechnik, Elektrotechnik or Mechatronik) and the potential main study period (Master in Computer Science, Diplom-Ingenieur Computer- und Kommunikationstechnik or Mechatronik) will be paid respect to.

Inhalt

As the basic principle, the course will give an introduction into the various building blocks that modern telecommunication systems do incorporate. Sources, sinks, source and channel coding, modulation and multiplexing are the major keywords, but we will also deal with dedicated pieces like A/D- and D/A-converters and quantizers in a little bit more depth.

The course will refresh the basic transformations (Fourier, Laplace) that give access to system analysis in the frequency domain, it will introduce derived transformations (z, Hilbert) for the analysis of discrete systems and modulation schemes and it will briefly introduce algebra on finite fields to systematically deal with error correction schemes that play an important role in modern communication systems.

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Weitere Informationen

This module was formerly also known as *Telecommunications I.*
Lernziele / Kompetenzen

Overview of challenges and methods in Data Science and AI. Basic knowledge of key concepts and algorithms.

Inhalt

Introduction to history and concepts of Data Science and AI

- Machine Learning (supervised, unsupervised, reinforcement, neural networks)
- (adversarial) Search, Planning
- Reasoning
- Modeling and Simulation
- Data Management, Big Data Engineering, and Analytics

The methods will be covered in the context of applications, such as Game Playing, Computer Vision, Autonomous Driving, Language Processing, Social Networks.

The exercises will cover methodological, algorithmic, as well as practical aspects. Where basic programming or scripting skills are required, the lecture and exercises will introduce these skills.

Literaturhinweise
Lernziele / Kompetenzen

In diesem Kurs werden grundlegende Konzepte des maschinellen Lernens behandelt, wobei der Schwerpunkt auf statistischen Methoden liegt. Der Kurs vermittelt die notwendigen Fähigkeiten um für einen gegebenen Datensatz geeignete statistische Methoden für dessen Analyse auszuwählen, anzuwenden, und die Qualität der Resultate zu bewerten. Der Kurs behandelt sowohl sowohl theoretische als auch praktische Aspekte des maschinellen Lernens, legt den Fokus jedoch auf praktische Aspekte.

Die Vorlesung folgt im Großen und Ganzen dem Buch "An Introduction to Statistical Learning with Applications in R (2013)". In einigen Fällen erhält der Kurs zusätzliches Material aus dem Buch The Elements of Statistical Learning, Springer (second edition, 2009). Das erste Buch ist der einleitende Text, das zweite behandelt fortgeschrittene Themen. Beide Bücher sind als kostenlose PDFs erhältlich. Es wird durchschnittlich eine Vorlesung pro Woche (90 Minuten) und alle zwei Wochen (90 Minuten) ein Tutorium angeboten.

Inhalt

Die Vorlesung behandelt grundlegende Methoden des maschinellen Lernens, insbesondere folgende Inhalte:

- Introduction to statistical learning
- Overview over Supervised Learning
- Linear Regression
• Linear Classification
• Splines
• Model selection and estimation of the test errors
• Maximum-Likelihood Methods
• Additive Models
• Decision trees
• Boosting
• Dimensionality reduction
• Unsupervised learning

Literaturhinweise
Human Computer Interaction

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr. Jürgen Steimle
Dozent/innen: Prof. Dr. Jürgen Steimle

Zulassungsvoraussetzungen:
- undergraduate students: Programmierung 1 and 2
- graduate students: none

Leistungskontrollen / Prüfungen:
- Regular attendance of classes and tutorials
- Successful completion of exercises and course project
- Final exam
 - A re-exam takes place (as written or oral examination).

Lehrveranstaltungen / SWS:
- 4 h lectures
- + 2 h tutorial
- = 6 h (weekly)

Arbeitsaufwand:
- 90 h of classes
- + 180 h private study
- = 270 h (= 9 ECTS)

Modulnote: Will be determined from performance in exams, exercises and practical tasks. The exact modalities will be announced at the beginning of the module.

Sprache: English

Lernziele / Kompetenzen

This course teaches the theoretical and practical foundations for human computer interaction. It covers a wide overview of topics, techniques and approaches used for the design and evaluation of modern user interfaces.

The course covers the principles that underlie successful user interfaces, provides an overview of input and output devices and user interface types, and familiarizes students with the methods for designing and evaluating user interfaces. Students learn to critically assess user interfaces, to design user interfaces themselves, and to evaluate them in empirical studies.

Inhalt

- Fundamentals of human-computer interaction
- User interface paradigms, input and output devices
- Desktop & graphical user interfaces
- Mobile user interfaces
- Natural user interfaces
- User-centered interaction design
- Design principles and guidelines
- Prototyping

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Information Retrieval and Data Mining (IRDM)

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>at least every two years</td>
<td>1 semester</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr. Gerhard Weikum
Dozent/innen: Prof. Dr. Gerhard Weikum

Zulassungsvoraussetzungen: Good knowledge of undergraduate mathematics (linear algebra, probability theory) and basic algorithms.

Leistungskontrollen / Prüfungen
- Regular attendance of classes and tutor groups
- Presentation of solutions in tutor groups
- Passing 2 of 3 written tests (after each third of the semester)
- Passing the final exam (at the end of the semester)

Lehrveranstaltungen / SWS
- 4 h lectures
- 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand
- 90 h of classes
- 180 h private study
= 270 h (= 9 ECTS)

Modulnote: Will be determined by the performance in written tests, tutor groups, and the final exam. Details will be announced on the course website.

Sprache: English

Lernziele / Kompetenzen

The lecture teaches models and algorithms that form the basis for search engines and for data mining and data analysis tools.

Inhalt

Information Retrieval (IR) and Data Mining (DM) are methodologies for organizing, searching and analyzing digital information from the web, social media and enterprises as well as multivariate datasets in these contexts. IR models and algorithms include text indexing, query processing, search result ranking, and information extraction for semantic search. DM models and algorithms include pattern mining, rule mining, classification and recommendation. Both fields build on mathematical foundations from the areas of linear algebra, graph theory, and probability and statistics.

Literaturhinweise

Will be announced on the course website.
Modulverantwortliche/r Prof. Dr. Isabel Valera
Dozent/inn/en Prof. Dr. Isabel Valera

Zulassungsvoraussetzungen The lecture gives a broad introduction into machine learning methods. After the lecture the students should be able to solve and analyze learning problems.

Leistungskontrollen / Prüfungen
- Regular attendance of classes and tutorials.
- 50% of all points of the exercises have to be obtained in order to qualify for the exam.
- Passing 1 out of 2 exams (final, re-exam).

Lehrveranstaltungen / SWS 4 h lectures
+ 2 h tutorial
= 6 h (weekly)

Arbeitsaufwand 90 h of classes
+ 180 h private study
= 270 h (= 9 ECTS)

Modulnote Determined from the results of the exams, exercises and potential projects. The exact grading modalities are announced at the beginning of the course.

Sprache English

Lernziele / Kompetenzen

The lecture gives a broad introduction into machine learning methods. After the lecture the students should be able to solve and analyze learning problems.

Inhalt
- Bayesian decision theory
- Linear classification and regression
- Kernel methods
- Bayesian learning
- Semi-supervised learning
- Unsupervised learning
- Model selection and evaluation of learning methods
- Statistical learning theory
- Other current research topics

Literaturhinweise

Will be announced before the start of the course on the course page on the Internet.
Multimedia Transport

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>winter semester</td>
<td>1 semester</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r: Prof. Dr.-Ing. Thorsten Herfet

Dozent/inn/en: Prof. Dr.-Ing. Thorsten Herfet

Zulassungsvoraussetzungen: For graduate students: none

Leistungskontrollen / Prüfungen:
- Regular attendance of classes and tutorial.
- Paper as well as programming exercises for exam qualification
- Final exam
- A re-exam takes place before the start of lectures in the following semester

Lehrveranstaltungen / SWS:
- 3 h lectures
- + 1 h tutorial
- = 4 h (weekly)

Arbeitsaufwand:
- 60 h of classes
- + 90 h private study
- + 120 h programming exercise
- = 270 h (= 9 ECTS)

Modulnote: Graded absolute 1.0-n.b. and relative A-F

Sprache: English

Lernziele / Kompetenzen

The course deals with Media Transport over the Internet. After the course students know how data- and mediatransport is solved in today’s Internet and have a good understanding of so called erasure channels. Besides the pure transport protocol design the course complements the fundamentals laid in TCI and TCII by introducing state-of-the-art error codes (Van-der-Monde-Codes, Fountain Codes) and by engineering tasks like the design of a Digital PLL.

Inhalt

The course introduces media transmission over packet channels, specifically the Internet. After establishing a Quality of Service framework built on ITU requirements the course models erasure channels without and with memory. Key characteristics like the channel capacity and the minimum redundancy information are derived.

The second part of the course introduces current media transport protocol suites (TCP, UDP, RTP, RTSP) and middleware (ISMA, DLNA, UPnP, DVB-IPI).

In the second half of the course audiovisual coders used in the Internet are introduced (H.264, AAC), state-of-the-art forward error coding schemes (Van-der-Monde-Codes, Fountain Codes) are explained and essential elements like a Digital Phase-locked Loop are developed.

Literaturhinweise

The course will come with a self contained manuscript. The most essential monographs used for and referenced within the manuscript are available in the Computer Science Library of Saarland University.
Weitere Informationen

This module was formerly also known as Future Media Internet.
Modulverantwortliche/r Prof. Dr. Dietrich Klakow

Dozent/inn/en Prof. Dr. Dietrich Klakow

Zulassungsvoraussetzungen Mathematik für Informatiker I - III or comparable; good programming skills.

Leistungskontrollen / Prüfungen Written Exam

Lehrveranstaltungen / SWS
- 2 h lectures
- 2 h tutorial
= 4 h (weekly)

Arbeitsaufwand
- 60 h of classes
- 120 h private study
= 180 h (= 6 ECTS)

Modulnote Based on written exam. Exact details will be announced in the first lecture.

Sprache English

Lernziele / Kompetenzen

The participants will be introduced to the key ideas of basic classification algorithms and in particular neural networks. A focus is also the implementation and applications to relevant problems.

Inhalt

- Classification
- Regression
- Linear Classifiers
- Perceptron
- Support Vector Machines
- Multy-Layer Perceptrons
- Deep Learning Software
- Autoencoders
- LSTMs
- Recurrent Neural Networks
- Sequence-to-sequence learning

Literaturhinweise

Ian Goodfellow and Yoshua Bengio and Aaron Courville
Deep Learning
MIT Press, 2016
http://www.deeplearningbook.org
Modulverantwortliche/r: Prof. Dr. Dietrich Klakow
Dozent/inn/en: Prof. Dr. Dietrich Klakow

Zulassungsvoraussetzungen: For graduate students: none

Leistungskontrollen / Prüfungen: Written Exam

Lehrveranstaltungen / SWS:
- 2 h lectures
- 2 h tutorial
 = 4 h (weekly)

Arbeitsaufwand:
- 60 h of classes
- 120 h problem solving and private study
 = 180 h (= 6 ECTS)

Modulnote: Final Exam Mark
Sprache: English

Lernziele / Kompetenzen
Acquire core competencies in the mathematical basics of language processing and practice the implementation of essential methods.

Inhalt
- language processing: basic terms
- mathematical foundations
- word sense disambiguation
- part-of-speech tagging
- named-entity recognition
- information retrieval
- text classification

Literaturhinweise
Chris Manning and Hinrich Schütze
Foundations of Statistical Natural Language Processing
Modulverantwortliche/r Prof. Dr. Jilles Vreeken
Dozent/inn/en Prof. Dr. Jilles Vreeken

Zulassungsvoraussetzungen a background in statistics, machine learning, and/or data mining is strongly recommended (e.g. *Elements of Machine Learning*, *Elements of Statistical Learning*, *Machine Learning*, or *Information Retrieval and Data Mining*)

Leistungskontrollen / Prüfungen oral exam and written assignments

Lehrveranstaltungen / SWS 2 h lectures
 = 2 h (weekly)

Arbeitsaufwand 30 h of classes
 + 150 h private study
 = 180 h (= 6 ECTS)

Modulnote Will be determined from performance in examinations and exercises. The exact modalities will be announced at the beginning of the module.

Sprache English

Lernziele / Kompetenzen

- Thorough understanding of selected advanced topics in data analysis.
- Ability to quickly understand the main gist in scientific literature, without getting lost in details, critically assessing claims, seeing through the hype.
- Ability to comparatively analyse and reason about (seemingly disparate) concepts and methods, quickly developing meta-level understanding of advanced topics.

Inhalt

During the course we consider hot topics in machine learning and data mining that are also important to understand deeply. The exact topics we will cover will differ per year, but for example often include aspects of Pattern Discovery, Dependency Discovery, Causal Inference, and Fairness.

Literaturhinweise

Recent scientific publications from the top venues in machine learning and data mining.
Zerstörungsfreie Prüfverfahren I

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>jedes Sommersemester</td>
<td>1 Semester</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Prof. Dr. Christian Boller
Dozent/inn/en Prof. Dr. Christian Boller

Zulassungsvoraussetzungen keine

Leistungskontrollen / Prüfungen Schriftliche Klausur am Ende des Moduls (Dauer 2 Stunden)

Lehrveranstaltungen / SWS

| Arbeitsaufwand | 30 h Präsenzstudium + 60 h Eigenstudium | = 90 h (= 3 ECTS) |

Lehrveranstaltungen

Arbeitsaufwand

30 h Präsenzstudium
+ 60 h Eigenstudium
= 90 h (= 3 ECTS)

Modulnote Wird aus Leistungen in Klausur primär ermittelt. Praktische Übungsaufgaben können bis zu 20% ergänzend einfließen. Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben.

Sprache Deutsch

Lernziele / Kompetenzen

Erlernen und verstehen akustischer (mechanischer) und elektromagnetischer Prüfverfahren

Inhalt

Einführung:
Was ist zerstörungsfreie Prüfung? Warum ZIP? Qualitätssicherung, Schadenstolerantes Bauen

Schwingungen:
Harmonische ungedämpfte Schwingung einer federnd gelagerten Masse; Periodische Funktionen und Fourier-Analyse; Nutzung der harmonischen Schwingungen zur Schadensanalyse (elementare Modalanalyse) durch Ableitung der Verformungsungleichungen am Biegebalken; Modalanalyse am delaminierten Biegebalken; Gekoppelte Schwingungen; Steifigkeitsmatritzen; Viskos gedämpfte Schwingung und Dämpfung als Parameter; Anwendungen der Modalanalyse; Freie Seilschwingungen; Wellengleichung und Wellenausbreitung; Seilschwingungen auf elastischer Basis; Wellenausbreitung auf elastischer Basis und Dispersion; Phasengeschwindigkeit und Gruppengeschwindigkeit.

Akustik und Ultraschall:
Elementare Wellenformen: Longitudinalwellen, Transversalwellen, Oberflächenwellen, Volumenwellen; Parameter der Wellenausbreitung (Amplitude, Frequenz, Phase, Geschwindigkeit, etc.); Eindimensionale Wellenausbreitung; Wellenausbreitung und Steifigkeit; Akustische Impedanz; Räumliche Wellenausbreitung; Reflexion und Transmission; Snellius’ches Brechungsgesetz; Parameter des Schalls (Geschwindigkeit, Intensität, Dämpfung, Temperatur); Schwingungsformen und Frequenzspektrum; Akustische Schwingungen und mechanische Spannungen wie Spannungsanalyse (1D, 2D, 3D), Umwandlung von Spannungen in Dehnungen, Spannungstensoren, Verallgemeinertes Hooke’sches Gesetz, Anisotropie; Geführte Wellen (Oberflächenwellen, Plattenwellen); Piezoelektrischer Effekt zur Schallerzeugung; Piezoelektrische Wandler (Aufbau, Kopplung); Schallausbreitung (Nahfeld, Fernfeld, Abstrahlverhalten); Fehlererkennung (Wellenlänge vs. Fehlergröße); Formen der US-Prüfung (Pitch-Catch vs. Puls-Echo); Bedeutung des Einschallwinkels; Aufbau eines Ultraschallprügerät; Fehlerprüfung (6 dB-Methode, Ersatzfehlergrößen, AVG-Diagramm); Darstellung von US-Ergebnissen (A-, B-, C- und D-Diagramm, 3D-Visualisierung); Prüfung mit Gruppenstrahlern (Phased Array); Synthetic Aperture Focussing Technique (SAFT); Ausbreitung von Ultraschallwellen; Time of Flight Diffraction (TOFD); Detektion von Rissen (Inspektionsstrategien, Fehlermöglichkeiten); Luftultraschall; Laser-induzierter Ultraschall; Elektromagnetisch induzierter Ultraschall (EMUS); Prüfung mit Ultraschall (Beispiele): Schweißnähte,
Schichtdicken (z.B. Här tetiefen), Eisenbahnachsen, Eisenbahnräder, Lichtmaste, Pipelines, Prüfung heißer Rohre, Akustisches Mikroskop; Zukunft des Ultraschalls – Structural Health Monitoring

Magnetik:
Magne te und Magnetfelder; Spulen; Ursachen der Magnetik (Atommodelle); Magnetische Induktion (Permeabilität, Induktivität, Hall-Effekt, Giant Magnetic Resistors (GMR)); Hauptarten des Magnetismus (Ferromagnetismus, Paramagnetismus, Diamagnetismus); Magnetische Hysterese; Erzeugen von Magnetfeldern; Superposition von Magnetfeldern; Messung von Magnetfeldern; Magnetisches Prüfkonzept; Magnetisierung und Mikrostruktur (Domänen, Bloch-Wände, Weiß’sche Bezirke, etc.); Permeabilität; Streufluss; Oberwellenanalyse; Barkhausenrauschen; Wirbelstromimpedanz; 3MA-Konzept und seine Anwendungen: Spannungsmessungen (1D, 2D, Eigenspannungen), Härtemessung, Här tetiefe, Schleifbrand, Restaustenit, Simultane Messungen; Weitere Anwendungsbeispiele: Materialversprödung, Plastische Dehnung; Magnetische Kraftmikroskopie (Magnetik auf der Mikrobene): Schichtdicken, Eigenspannungen.

Wirbelstrom:
Induktivität (Faraday-Regel); Selbstinduktivität; Induzierter Widerstand (Lenz’sche Regel); Elektrische Impedanz; Prinzip des Wirbelstroms; Wirbelstrom in Medien; Eindringtiefe (Skin-Effekt); Impedanzebenen und Interpretation; Messprinzip des Wirbelstroms: Messaufbau, Spulen, Absolut- versus Differenzprüfköpfen, Magnetfeldbeeinflussung, Kalibrieren, Analoggeräte: Anwendungsbeispiele: Werkstoffdetektion (Verwchslungsprüfung), Dickenprüfung, Kohlefaserverbundprüfung, Charakterisierung von Korrosionszuständen.

Literaturhinweise

www.ndt.net
www.ndt-ed.org

A. Erhard, 2014: Verfahren der zerstörungsfreien Materialprüfung; DGZfP (Hrsg.); DVS Media GmbH

Jiles D.C., 2008: Principles of Materials Evaluation; CRC Press, Taylor & Francis, Boca Raton/FL, USA
Modulbereich 5

Seminars
Seminar

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst. sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>jedes Semester</td>
<td>1 Semester</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r Studiendekan der Fakultät Mathematik und Informatik
Studienbeauftragter der Informatik

Dozent/inn/en Professoren der Fachrichtung

Zulassungsvoraussetzungen Grundlegende Kenntnisse im jeweiligen Teilbereich der Studienganges.

Leistungskontrollen / Prüfungen
- Beiträge zur Diskussion
- Thematischer Vortrag
- Schriftliche Ausarbeitung
- Mündliche Abschlussprüfung über das gesamte Themengebiet

Lehrveranstaltungen / SWS 2 SWS Seminar

Arbeitsaufwand
30 h Präsenzstudium
+ 180 h Eigenstudium
= 210 h (= 7 ECTS)

Modulnote Die Modalitäten der Notenvergabe werden vom verantwortlichen Hochschullehrer festgelegt.

Sprache Deutsch oder Englisch

Lernziele / Kompetenzen

Die Studierenden haben am Ende der Veranstaltung ein tiefes Verständnis aktueller oder fundamentalen Aspekte eines spezifischen Teilbereiches der Informatik erlangt.

Sie haben Kompetenz im eigenständigen wissenschaftlichen Recherchieren, Einordnen, Zusammenfassen, Diskutieren, Kritisieren und Präsentieren von wissenschaftlichen Erkenntnissen gewonnen.

Inhalt

Praktisches Einüben von

- reflektierender wissenschaftlicher Arbeit,
- Analyse und Bewertung wissenschaftlicher Aufsätze,
- Verfassen eigener wissenschaftlicher Zusammenfassungen
- Diskussion der Arbeiten in der Gruppe
- Erarbeiten gemeinsamer Standards für wissenschaftliches Arbeiten
- Präsentationstechnik

Spezifische Vertiefung in Bezug auf das individuelle Thema des Seminars.

Der typische Ablauf eines Seminars ist wie folgt:

- Vorbereitende Gespräche zur Themenauswahl
- Regelmäßige Treffen mit Diskussion ausgewählter Beiträge
- Vortrag und Ausarbeitung zu einem der Beiträge
- Mündliche Prüfung über das erarbeitete Themengebiet
Literaturhinweise
dem Thema entsprechend

Weitere Informationen
Die jeweils zur Verfügung stehenden Seminare werden vor Beginn des Semesters angekündigt und unterscheiden sich je nach Studiengang.
Modulbereich 6

Master Seminar and Thesis
Master Seminar (Visual Computing)

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>every semester</td>
<td>1 semester</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
Dean of Studies of the Faculty of Mathematics and Computer Science
Study representative of computer science

Dozent/inn/en
Professors of the department

Zulassungsvoraussetzungen
Acquisition of at least 30 CP

Leistungskontrollen / Prüfungen
- Preparation of the relevant scientific literature
- Written elaboration of the topic of the master thesis
- Presentation about the planned topic with subsequent discussion
- Active participation in the discussion

Lehrveranstaltungen / SWS
2 h seminar (weekly)

Arbeitsaufwand
- 30 h seminar
- + 30 h contact with supervisor
- + 150 h private study
= 210 h (= 7 ECTS)

Modulnote
graded

Sprache
English or German

Lernziele / Kompetenzen

The Master seminar sets the ground for carrying out independent research within the context of an appropriately demanding research area. This area provides sufficient room for developing own scientific ideas.

At the end of the Master seminar, the basics ingredients needed to embark on a successful Master thesis project have been explored and discussed with peers, and the main scientific solution techniques are established.

The Master seminar thus prepares the topic of the Master thesis. It does so while deepening the students’ capabilities to perform a scientific discourse. These capabilities are practiced by active participation in a reading group. This reading group explores and discusses scientifically demanding topics of a coherent subject area.

Inhalt

The methods of computer science are systematically applied, on the basis of the "state-of-the-art".

Literaturhinweise

Scientific articles corresponding to the topic area in close consultation with the lecturer.
Master Thesis

<table>
<thead>
<tr>
<th>Studiensem.</th>
<th>Regelst.sem.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>every semester</td>
<td>6 months</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r
Dean of Studies of the Faculty of Mathematics and Computer Science

Dozent/inn/en
Professors of the department

Zulassungsvoraussetzungen
Successful completion of the Master Seminar

Leistungskontrollen / Prüfungen
Written elaboration in form of a scientific paper. It describes the scientific findings as well as the way leading to these findings. It contains justifications for decisions regarding chosen methods for the thesis and discarded alternatives. The student’s own substantial contribution to the achieved results has to be evident. In addition, the student presents his work in a colloquium, in which the scientific quality and the scientific independence of his achievements are evaluated.

Lehrveranstaltungen / SWS
none

Arbeitsaufwand
- 50 h contact with supervisor
- + 850 h private study
- = 900 h (= 30 ECTS)

Modulnote
Grading of the Master Thesis

Sprache
English or German

Lernziele / Kompetenzen

In the master thesis the student demonstrates his ability to perform independent scientific work focusing on an adequately challenging topic prepared in the master seminar.

Inhalt

In the master thesis the student demonstrates his ability to perform independent scientific work focusing on an adequately challenging topic prepared in the master seminar.

Literaturhinweise

According to the topic